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It is shown that with any generalized diffusion a complementary variable, the 
probabilistic group velocity (PGV), can be associated, such that the uncertainties 
i n  the position (diffusion) and its complementary PGV (like momentum) satisfy 
a Heisenberg-type uncertainty relation. It is shown that the bound is achieved in 
the linear Gaussian case. In the statistical steady state, the PGV vanishes ident- 
ically. The uncertainty in the PGV is an achievable upper bound to the rate of 
the RMS value of the diffusion. The PGV is further related to the entropy rate 
of the diffusion process. 

1. INTRODUCTION 

The similarity between the free Schr6dinger equation and the diffusion 
equation has been the motivation for the search for a stochastic interpreta- 
tion of quantum mechanics. Such a program is carried out in stochastic 
mechanics (Blanchard et al., 1987; Carlen, 1988), where it is also shown that 
a stochastic analog exists for the Heisenberg uncertainty relations. Fiirth 
derived an uncertainty relation for the (pure) diffusion equation. It bounds 
the product of the uncertainties in position and what he called the osmotic 
velocity (Fiirth, 1933). The notion of osmotic velocity is generalized to more 
general semi-martingales (Blanchard et al., 1987), using the forward and 
backward Kolmogorov equations. However, it does not satisfy a Heisenberg- 
type uncertainty relation. In this paper, we show that with any arbitrary 
continuous semi-martingale we can associate a complementary variable, the 
probabilistic group velocity (PGV), such that the product in the uncertainties 
in the semi-martingale (the position) and its complementary PGV (like 
momentum) satisfies an uncertainty relation. The next section defines this 
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PGV, and the uncertainty principle it satisfies is proven. In Section 3, we 
show that the minimum uncertainty is achieved in the linear Gaussian case. 
Interpretations and properties of both the PGV and the uncertainty are then 
discussed in Section 4. Finally, Section 5 connects the entropy as function 
of time to the PGV. This paper is an extended version of a conference paper 
(Verriest and Shin, 1991), and emphasizes a particle density interpretation. 

2. PGV AND UNCERTAINTY PRINCIPLE 

Let (fl, ~ ,  P) be a complete probability space, and let w(t) be the 
standard Wiener process defined on it. Let f (x ,  t) and g(x, t) be Lipshitz 
continuous functions R x R+ ~ R ,  so that the semi-martingale x(t) described 
by the It6 differential equation 

dx =f(x,  t) dt + g(x, t) dw(t) (1) 

is well defined and has continuous sample paths. Let further Xo be the initial 
condition, which we take to be random (measurable with respect to ~-). 
Let also its distribution be absolutely continuous with respect to Lebesgue 
measure, so that a density P0 exists. It is well known that an equivalent 
description of the It6 system is given by the conditional probability density 
p(x, tly, s) of the solution x(t) of the It6 equation (1), starting in y at 
time s < t. This conditional density satisfies the Fokker-Planck (or forward 
Kolmogorov) equation on R 

OP_ 
Ot 

with initial condition 

O(fp) 1 a2(g2p) 
- -  ~ ( 2 )  

t~x 2 ~x 2 

lim p(x, t ly, s)= 8 ( x - y )  (3) 
tSs 

A particle interpretation may be given for this. Its position is modeled 
by the semi-martingale x(t). The It6 equation is a nonlinear Ornstein-Uhlen- 
beck equation in a field with driftf(x, t) and diffusion g(x, 02. Let its initial 
position (s = 0) be chosen at random with density po(x). Denote the probabil- 
ity that the particle will be found at time t in an infinitesimal interval of 
length dx near x by p(x, t) dx. It is easily shown that p(x, t) also satisfies 
the same Fokker-Planck equation (2) on R, but with initial condition 
p(x, o) = po(x). 

Alternatively, one can consider an ensemble of particles, all obeying the 
dynamics (1), but driven by independent Brownian motions {w;(t): i~J}, 
where or is some index set, which is not necessarily countable. If the position 
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of  the particle indexed by i at time t is xi(t), then p(x, t) is the particle density 
near x at time t, i.e., 

p(x, t) dx= Jff ~ lt~.x +ax)(Xi( t) ) (4) 
J 

The ~V" is a normalization factor. The independence of  the driving terms 
guarantees that the individual particles only react to the drift and diffusion 
fields, and not with each other. They are in effect "test particles." The 
Fokker-Planck equation is then interpreted as a diffusion equation. The latter 
model will be utilized to develop the concept of  the uncertainty principle. 

Define now a quantity 

1 0 
u(x, t )=f(x,  t) [g2(x, t)p(x, t)] (5) 

2p(x, t) Ox 

which can be interpreted as a velocity, given by a deterministic drift term 
f (x ,  t), and a diffusion-related term, an interaction with the density field 
p(x, t). For a constant diffusion, g2(x, t )=  o -2, the negative of  the second 
term in (5) is referred to as the osmotic velocity in Blanchard et al. (1987, 
p. 43). It will be shown below that the PGV defined by us, unlike the osmotic 
velocity, satisfies an uncertainty principle. Note also that (5) can be expressed 
alternatively by 

u(x, t )=f(x,  t ) -  �89 t) Oz--log[gE(x, t)p(x, t)] (6) 
Ox 

The diffusion equation (2) can be written as a continuity equation 

Op+ J= o 
Ot Ox 

(7) 

where we introduced the new quantity 

j =  pu (8) 

This j can be interpreted as a probability current (flux), so that the u(x, t) 
defined in (5) is a velocity term, which we shall call the probabilistic group 
velocity (PGV). The name reflects that it depends on the particle density, 
and is therefore not an attribute of  an individual particle in the ensemble d .  
Equation (8) shows that with the ensemble-of-particles interpretation, the 
PGV is the net average velocity of  the group of particles crossing through 
position x at time t; i.e., ifallparticles were moving uniformly. Indeed the 
momentum carried through x is j (x,  t) dx = [p(x, t) dx]u(x, t). If  this is 
distributed uniformly over the probability mass p(x, t) dx, then obviously 
u(x, t) is the equivalent group velocity. 
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Alternatively, confider at time t the interval with boundaries a and b. 
Let this interval be displaced, compatibly with the velocity field defined by 
the PGV. Thus at an infinitesimal amount of  time dt later new boundaries 
are respectively a + u(a, t) dt and b + u(b, t) dt. The probability mass in the 

. . . .  b original interval is Sa p(x, t) dx, while in the displaced one (at time t + dt) 
it is 

fa 
b + u(bd) dt 
+u~,)a,, p(x, t+dt) dx 

The difference between the two is, up to first order 

f f f~i ' f i l )al t l f f (x, t)+OP(ff t ' t )dt]dx-f f  ff(x,t) dx Ap(a, b, t)= , 

f I]r ] = p(x, t)+ Op(x' t) dt d x +  fb  Of(X,  t) dt dx 
- .+.~. , , )d,~ Ot Jo k & 

~b+'b't)a' I t )d t ]d  x + p(x, t) + Op(~, 
~'b 

= -p(a,  t)u(a, t) d t -  O(p(x, t)u(x, t)) dx dt 
Ox 

+ p(b, t)u(b, t) dt 

= [p(b, t)u(b, t) - p(a, t)u(a, t)] d t -  d[p(x, t)u(x, t)] dt 

= 0 .  (9) 

Hence the probability mass inside a domain which moves with the (nonuniform) 
velocityfieM u remains constant. With the particle representation, this means 
that the number of  particles in the comoving domain remains constant. 
However, this does not mean that the individual Brownian particles cannot 
move in and out of  the boundary. It just says that the net number remains 
constant, in equilibrium, relative to the motion according to the PGV. 

Example. Of particular interest is the casef(x ,  t) = 0  and g(x, t) = 1 (the 
pure constant diffusion), for which the PGV is 

1 Op(x, t) 
u(x, t) 

2t Ox 
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Using the Green's function, we can express this in terms of the initial density 
po(X) a s  

u(x, t )=1  [x_S~oo YPo(Y) exp[-(Y- X)2/2t] dy] 
~-o~ Po(Y) exp[ - (y -x )2 /2 t ]  dy _] 

If the initial position is deterministic and zero, we have the standard Wiener 
process (Brownian motion). The density p(x, t) is then normally distributed 
with mean zero and variance t, so that 

x 
u(x, t ) = -  

2t 

Consider now a spatial average 

(U)D(t) = J~ p(x, t)U(X, t) dx 

of this group velocity u(x) over an interval D = (a, b), which may be all of 
R, but is such that g2(b, t)p(b, t) =g2(a, t)p(a, t). From (5) one easily gets 

(u)o(t) = (f)D(t) (lO) 

We introduce the (local on D) deviation in the PGV 

ao(x, t) = u(x, t) - (u)D(t) 

=f(x,  t) 1 O [g(x, t)2p(x, t)] (11) 
2p(x, t) Ox 

where 37(x, t)=f(x, t ) -  ( f)o(t) .  For notational simplicity, the subscript D 
will be omitted when the domain is understood. 

The variance Au 2 is defined as (~2), and is a measure for the uncertainty 
in the PGV. It is readily obtained (suppressing the time coordinate) as 

I 2 Of \ ,  1 f l (Og2pXl 2 g g /*a  / o2) 

It should be emphasized again that this is an ensemble property of the group 
of particles near x. It is the local (in interval D) spatial fluctuation in the 
group velocity PGV at time t. 

On the other hand, the uncertainty in the position given by Ax 2 has a 
single-particle interpretation: It is the variance in the position at time t, i.e., 
x(t), of a test particle, starting at time 0, with a randomly chosen initial 
position with density P0(" ). The following uncertainty principle gives a lower 
hound to the product of these uncertainties. 
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Theorem 1. Uncertainty Principle. Consider an ensemble of independent 
particles obeying the semi-martingale dynamics (1), with initial density 
po(x). Let p(x, t) denote the particle density at time t. Let D = (a, b) be an 
interval on the real line R for which 

g(a, t)2p(a, t)=g(b, t)2p(b, t) (13) 

( a -  <x>o)g(a, t)Ep(a, t) = ( b -  <x>o)g(b, t)2p(b, t) (14) 

Then the uncertainties in the position x(t) and its associated PGV u(t) in D 
obey the uncertainty principle: 

Ax Au > �89 + 2(x - <x> ) ( f -  ( f > ) > [ (15) 

Proof Consider for an arbitrary constant C the obvious inequality 

a(x)+X x> >_o (16) 

Multiplying (16) by p and integrating over the interval D, one gets precisely, 
after a partial integration, 

<(x- (x>)(f- ( f  >)) Au2+2 
C 

[(x- <x>)g2(x)p(x)]l o 
C 

2 2 

C C 2 -  

where OD denotes the boundary (the points a and b of D). Hence, by the 
assumption on the interval D, we get the inequality 

< ( x -  ( x > ) ( f -  <f>)>  b <g~> +AXE>0 Au2+2 (17) 
C C ~ C  - 

Since C is arbitrary, it can now be chosen optimally to minimize the left- 
hand side of (17). Let thus 

/~x 2 

C = � 8 9  ) (18) 

and substitution in the inequality (17) yields finally the uncertainty relation 
(15), which is valid for all time. �9 
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The theorem says that the product of the uncertainties in the position 
of the particle (whose motion is modeled by a diffusion or continuous semi- 
martingale) and the uncertainty in the PGV is bounded below by the right- 
hand side of (15). For the standard Wiener process considered in the example 
above, the bound given by the uncertainty principle is �89 Noting that 
Au = 1 / (2~)  and Ax= x[/, it is seen that the equality holds in the uncertainty 
principle. This is not coincidental, as shown next. 

3. LINEAR GAUSSIAN PROCESSES 

The example considered in Section 2 generalizes easily to the time- 
dependent linear system 

dx=a(t)x dt + b(t) dw (19) 

For a Gaussian initial condition, the distribution of x(t) remains Gaussian, 
with mean re(t) and variance P(t) satisfying, respectively, 

rh( t) =a( t)m( t) (20) 

/~(t) = 2a(t)P(t) + b(t) 2 (21) 

The probabilistic group velocity can be computed explicitly. Indeed, since 

p(x, t)= 1 expl  [x-m(tl]2l (22) 
[21rP(t)] '/2 [ 2P(t) ) 

we find 

b(t) 2 x -  m(t) 
u(x, t)---a(t)x-~ - -  - -  

2 P(t) 

Averaging over the entire space D = R, we get 

<u)(t)= f[a(t)x* b(t)22 x - m ( t ) ]  jp~x,t) dx 

=a(t)m(t) 

from which the variance is easily obtained, 

2 2 

L 2e(oJ 

(23) 

(24) 

(25) 

(26) 



340 Verriest and Shin 

Substitution in the left-hand side of  the uncertainty principle shows the 
equality of  both sides in inequality (15). Thus we have proved the following: 

Corollary 1. Equality in the uncertainty principle is achieved for the 
linear Gaussian case. 

As a final remark, note that for a time-invariant stable system, a is 
negative, and a steady-state variance Poo exists. It is given by 

b 2 
Poo - (27) 

21al 

It follows from 

P(t)-Poo 
t~(x, t) = a I x -  m(t)] (28) 

P(t) 

that if P(t)< Poo, then sgn(t2)= sgn[x-m(t) ] .  That is, a particle at position 
x has a tendency to escape away from the mean [so that P(t) increases], 
while if P(t) > Poo, then sgn(ff) = sgn[x -  re(t)], and the tendency is to regu- 
late toward the mean. These tendencies have to be understood in a statistical 
sense. For  the statistical steady state, the right-hand side of  the equality (28) 
is zero, so that the spatial average of the fluctuation in the group velocity 
satisfies then Au = 0. In fact, more can be said: 

Corollary 2. A time-invariant linear Gaussian system with a <0  and 
b # 0 is in the statistical steady state if and only if u(x, t)= 0 for all x and t. 

Proof. It follows readily from (23) that for a and b as given, u(x, t)=0 
if and only if m = 0  and 2aP+b2=O, i.e., if the statistical steady state is 
reached. �9 

For every particle escaping a neighborhood near x, another one enters 
on average. A statistical steady state exists also in the time-variant case if 
a(t) is proportional (with a constant positive factor) to -b(t) 2. 

4. STATIONARITY AND PGV UNCERTAINTY 

The characterization of stationarity in the linear Gaussian case is so 
nice that one may wonder if it generalizes to the nonlinear time-invariant 
case. I f  the lower bound in the uncertainty principle is nonzero, then u(x, t) 
cannot be constant! We will show in this section that in fact the lower bound 
in the uncertainty principle is zero in the statistical steady state (SSS). Then 
we shall move on to interpret the PGV uncertainty as a bound on the rate 
of  the  RMS value of  x. 
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While an SSS may exist for a time-dependent system, we shall here 
uniquely look at the time-invariant equation (I) with driftf(x) and diffusion 
g(x)o It is clear that this time invariance does not necessarily imply that the 
solution p(x, t) to (2) is independent of t. However, if an SSS exists, it is 
characterized by a solution p(x) to the time independent equation (a second- 
order ODE) 

[f(x)p(x)]' - �89 = 0 (29) 

with of coarse the constraint that S. p(x) dx = 1. It is readily seen that the 
unique (by virtue of the assumed Lipshitz conditions) solution to (29) is 
~ven by 

p(X)=g~x)2ex p 2 g(z)2 _] (30) 

If this function is integrable, it is a potential steady-state density. The No is 
then the appropriate normalization factor. 

If the system is stochastically stable, then it can be shown that 

limp(x, t)---p~(x) (31) 

with p~(x) given by (30). General necessary and sufficient conditions for 
stochastic stability, i.e., condition (31), are not known, but sufficient condi- 
tions are derivable, for instance, via the geometric theory for parabolic 
equations (Hale et aL, 1984). 

Theorem 2. The statistical steady state, if it exists, is characterized by 
the PGV being identically zero, i.e, 

Vx, Vt_>0: u(x, 0 - 0 r  

Proof. (i) Sufficiency: If u(x, t)-O, then obviously O(p(x, t)u(x, t))/ 
Ox-O, hence, it follows from (2) that Op/Ot=O, implying stationarity. 

(ii) Necessity: If p(x, t) is independent of t, say p(x, t) =p~o(x), then 
the definition of the PGV (5) implies that for a time-invariant system (1), u 
is not a function of t. But by the Fokker-Planck equation (2), dp(x)u(x)/ 
dx= O. Hence p(x)u(x)= A, where A is some constant. Since for a steady 
state p(x)--}O as Ix[--}oo, then either u(x)--}oo if A~O, or u(x)=O. 
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Consider now 

R A dr= fR [u(x)p(x)] dx (32) 

=f,[f(x)p(x) 21d(g(x)2p(x))]dx  3 (33) 

= ( f )  - fR d[g(x)2p(x)] (34) 

But in the statistical steady state the average of x is constant. From (1) this 
implies O=d(x)/dt = ( f ) .  The second term in (34) is also zero by virtue of 
the assumption (14). It follows thus th~/t the constant A can only be zero, 
thus proving that u(x)-O. �9 

It follows from this theorem that if there exists a statistical steady state for 
a fime-invariant system, then in this SSS there is no uncertainty principle, 
i.e., the lower bound of the uncertainty principle is zero, since u - 0  implies 
Au = 0. If a stochastic system approaches the SSS, then somehow the PGV 
should approach zero. The following result relates the PGV with the rate of 
the RMS value of the diffusion in the general time-varying case. 

Theorem 3. The rate of change in the RMS value of the position of the 
Brownian particle obeying the dynamics (1) is upper bounded by the PGV 
uncertainty. 

Proof Returning to the original (time-dependent) It8 equation, it fol- 
lows from It8 differential rule that the variance P obeys 

dP= (g2+ 2 ( x -  (x) ) ( f -  ( f )  )) dt (35) 

Upon substitution in the uncertainty relation, we have 

Au Ax >1 aP(t) (36) 
2 1 d t l  

but, since also P =  Ax 2, this gives the equivalent 

dAx <- Au (37) 
dt 

which states that Au is bounded below by the maximally (achievable) rate 
of growth of the RMS value for the process x(t). �9 
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Finally we derive a class of systems for which u is constant. If u(x, t) = 
uo, then equations (7) and (8) lead to the first-order PDE 

(38) 
ax at 

which has the general solution F(x - Uot). If an initial density po(x) is given, 
the solution for the density is 

p(x, t) = p o ( x -  Uot) (39) 

The initial density moves uniformly with velocity Uo. Changing to a comoving 
coordinate ~ = x - u o t ,  we find that then P0(~) is a steady-state distribution 
for a system with drift f ( ~ ) - U o  and diffusion g(~)2, or, in the original 
spatial coordinate, f (x - Uot) and g(x - Uot) 2, respectively. 

5, ENTROPY AND PGV 

In this section, we give another relation where the group velocity u plays 
a significant role. Let xt be the solution to the It6 equation at a specific time 
t, and let p,(x) be its density function. The (differential) entropy is defined 
as  

H(x,) = - pt(x) log p,(x) dx 
oO 

(40) 

It is customary to write x in the argument of the entropy to denote the 
random variable whose entropy is computed. This is, however, an abuse of 
notation, as the entropy H in (40) is not a function of x. Now consider this 
entropy as parametrized by time t. The entropy rate can then be defined as 
the derivative of (40) with respect to t, provided this exists. Similar to the 
development in Costa and Cover (1984), we relate the entropy rate for the 
PGV. 

Theorem 4. The entropy rate of the diffusion equals the average diverg- 
ence of the PGV, i.e., 

dH(x,) <au ! 
dt - -~x (41) 

Proof  The infinitesimal interval [x, x + dx) contributes an amount 

h(x, t) dx = - p ( x ,  t) log p(x, t) dx 
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to the entropy (40). Making use of equations (7) and (8), one gets 

dx= -O--P-P log p d x -  p 0 log p dx 
Ot Ot Ot 

= - -'- (1 + log p) dx 
t3t 

= ~t_.up___ (1 + log p) dx 
,gx 

Ou 

Ox 

Ou 

Ox 

- - -  p(1  + l og  p) dx + u(1 + log  p) dp 

- - -  p dx + d[up log p] (42) 

Integration over x yields then the statement (41). �9 

By the integrability of p(x, t), the probability flux j ( x ,  t) must approach 
zero as Ixl ~ ~ .  Integrating by parts, we can therefore rewrite equation (41) 
a s  

dH(x,____~) + u(x, t) dp(x, t )= 0 (43) 
dt ~o 

If one interprets the infinitesimal form (42) as 

h(x, t + dt) d x -  h(x, t) dx du d[up log p] 

[p(x, t) dx] dt Ox p dx 
(44) 

then the left-hand side shows a change in the entropy contributed by the 
infinitesimal interval Ix, x + d x )  per unit probability mass, or in the particle 
interpretation, per particle in [x, x + dx). The right-hand side shows that this 
comes from two effects: one is the local (near x) change in u, the other is 
some "fluctuation" [the second term in (44), which is rather nondescriptive]. 
The nice property is that the net contribution of this second term to the 
overall entropy rate is zero. Hence, one could call the divergence part Ou/ 
0x the effective entropy (denoted by herr) contributed per particle at x in a 
time unit. 

Similarly, the infinitesimal form of equation (43) yields 

Oh dx = - u  dp dx + d[ j  log p] + dj (45) 
Ot ~x 
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Only the first term -u (ap /ax )  dx contributes effectively to the total entropy. 
So 

heff (x, t + dt) d x -  heff (x, t) dx 
u(x, t )=  (46) 

[Op(x, t) dx/Ox] dt 

Thus, the change in the effective entropy is due to the gradient in p. 
Per time unit and per unit of "gradient in p," this change in the effective 
contribution by the infinitesimal interval near x to the entropy is exactly the 
PGV u~ 
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